

Hydrogen Sulfide Sensor

Metal Oxide Technology

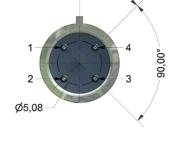
H2S-AFF* Figure 1 Schematic Diagram

Pins 1 & 6 Detector
Pins 2 & 5 Heater

Pins 3 & 4 Detector

Top View

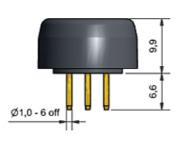
Side View

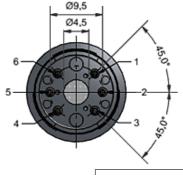

All dimensions in millimetres (± 0.1mm)

Bottom View

45,00°

H2S-MFF* Figure 2 Schematic Diagram


Pins 1 & 3 Heater Pins 2 & 4 Detector


Top View Side View

Bottom View

H2S-PFF* Figure 3 Schematic Diagram

Pins 1 & 6 Detector Pins 2 & 5 Heater Pins 3 & 4 Detector

All dimensions in millimetres (± 0.1mm)

Top View

Side View

Bottom View

Alphasense Ltd, Sensor Technology House, 300 Avenue West, Skyline 120, Great Notley. CM77 7AA. UK
Telephone: +44 (0) 1376 556 700 Fax: +44 (0) 1376 335 899 E-mail: sensors@alphasense.com Website: www.alphasense.com

^{*} also available as H2S-xF1 (without external filter; dimensions as above)

H2S Performance Data

GENERAL DESCRIPTION

The p-type metal oxide gas sensor is equipped with integrated filters to be selective to H_2S . The sensor is thermally cycled* to provide improved sensitivity with a large dynamic range and repeatable time-independent responses. The sensor also has low humidity response. The measured resistance of the sensing material increases in the presence of H_2S . This change in conductivity can be converted to an output voltage via a simple electrical circuit.

*The sensor is operated to alternate repeatedly between 400° C (the sensing temperature) and 525° C (the reset temperature). In this way, the exposure time in H_2 S is fixed at the dwell time at 400° C. The dwell time is determined by the detection range required by the end user. For further advice, please contact Technical Support.

PERFORMANCE

Heater resistance (R_u at RT)

Range	ppm H ₂ S limit of performance warranty	1 to 100
Sensor resistance (R _o)	$k\Omega$ (humid air)	250 ±50
Sensor resistance (R _a)	kΩ; H ₂ S @ 24ppm in air	2300 ±500
Sensor resistance ratio (R _g /R _o x 100%)	%; H ₂ S @ 24ppm in air	900 ±100
· ·		

Gas response relationship $(R_q/R_o - 1 = k.Conc^n)$	k is ppm ⁻¹ ;	0.34 +/- 0.04 (k); 1.0 (n)
(5 - 20ppm)	power n is dimensionless :	

Conc. is ppm

Gas response relationship ($R_g/R_o - 1 = k.Conc^n$) k is ppm⁻¹; 0.27 +/- 0.03 (k); 1.0 (n)

(20 - 100ppm) power n is dimensionless;

Conc. is ppm

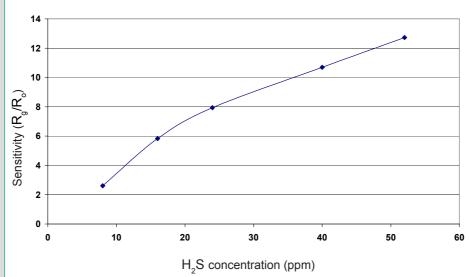
Heater resistance (R at sensing temp.)	Ω (400 <u>+</u> 10°C)	22 ±3
Heater resistance (R at reset temp.)	Ω (525 ±10°C)	26 ±3
Heater power consumption (mW) typical for 5:1	$V_{\perp} = 2.7 \pm 0.2 \text{V} (400^{\circ}\text{C})$	340 ±30
	3.7 ±0.3V (525°C)	530 ±50
Operating Temperature Range	°C	-20 to 120

 Ω (23 ±1°C)

10 ±1.5

CROSS SENSITIVITY - TBA following tests with filtered sensors

H ₂ sensitivity	% measured gas @ 100 ppm H ₂	TBA
EtOH sensitivity	% measured gas @ 50 ppm EtOH	TBA
C ₃ H ₈ sensitivity	% measured gas @ 500 ppm C ₃ H ₈	TBA
NH ₃ sensitivity	% measured gas @ 25 ppm NH ₃	TBA


Technica

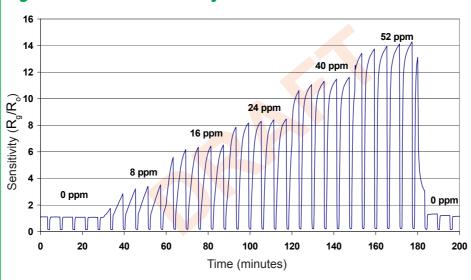

H2S Performance Data

Figure 4 Sensitivity as a function of Concentration

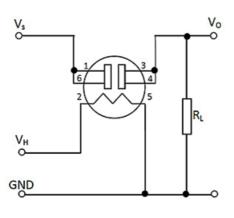

Sensitivity over range 8-52 ppm H_2S in 50% rh air. Operating in 2-temperature mode with a 5:1 cycle ratio of sensing (400°C) and resetting (525°C).

Figure 5 Real-time sensitivity as a function of Concentration

Real time sensitivity data for 8-52ppm H₂S in 50% rh air. Sensor operating in 2-temperature mode, pulsing between 400°C for 5 minutes and 525°C for 1 minute.

Figure 6 Basic Measuring Circuit for H2S-AFF or H2S-PFF package

Pins on the measuring circuit, shown in Figure 6, correspond with the pin numbers in Figure 1, 2 & 3 above.

When the sensor is connected in this half Wheatstone bridge configuration, $\rm V_{\rm o}$ decreases as the sensing material resistance increases.

Heater Voltage (V_H) 2.7 ± 0.2 V (AC or DC)

Circuit Voltage (V_S) Max. 24 VDC

Load Resistance (R₁) $> 1k\Omega$

H2S Performance Data

H2S-AFF EXPLOSION PROOF CERTIFICATION

This certification does not apply to H2S-MFF or H2S-PFF

CERTIFICATION

UL913 091007-E253708

Sira 07ATEX 1088X

II 2 G Ex d IIC T4 -40°C to 50°C 5V, 1.25 W

Class I, II and III, Division 1 10 V, 1.5 W, 10 μH

IECEx SIR07.0031X Ex d IIC T4

5VRc, 1.25 W, T_a -40° to 50°C

s I, II and III, Division 1 CSA 22.2 1906313 Class 4828 31

SPECIAL CONDITIONS FOR SAFE USE (denoted by X after the certificate number)

The non-metallic parts of the Flameproof Sensor Housings shall only be installed in enclosures that offer protection from mechanical impact damage and shall not be exposed to ultraviolet radiation.

The final installation of the Flameproof Sensor Housings shall ensure that any likely damage from dropping the complete device has been considered.

The Flameproof Sensor Housings shall only be connected to an electrical supply that is certified as compliant with IEC 60079-11 and limited to the following: Type D - 5 Vdc, 1.25 W

